Properties of Some Polynomial Projections

S. Lewanowicz
Institute of Computer Science, University of Wroctaw, 50-384 Wroclaw, Poland Communicated by E. W. Cheney

Received April 26, 1978

1. Introduction

Let \mathscr{P}_{n} denote the class of all projections, i.e., operators which are bounded and idempotent, mapping the space $C[-1,1]$ onto the subspace Π_{n} of polynomials of degree $\leqslant n$.

The quality of the approximations obtained from a projection $P \in \mathscr{P}_{n}$ is governed by the inequality

$$
\|f-P f\|_{\infty} \leqslant(1+\|P\|) E_{n}(f),
$$

where $E_{n}(f)$ is the error of the best approximation of f by elements of Π_{n}.
It is known [4] that there exists $P^{*} \in \mathscr{P}_{n}$ such that

$$
\left\|P^{*}\right\| \leqslant\|P\|
$$

for all $P \in \mathscr{P}_{n}$. Such a P^{*} is called a minimal projection from the class \mathscr{P}_{n}. Discovering such a projection is, however, very difficult. The complete solution to this problem, even in the case $n=2$, remains unknown.

The Fourier-Chebyshev operator $S_{n} \in \mathscr{P}_{n}$ is defined by

$$
\begin{equation*}
S_{n} f=\sum_{k=0}^{n} a_{k}[f] T_{k} \quad(f \in C[-1,1]), \tag{1.1}
\end{equation*}
$$

where

$$
\begin{gather*}
a_{k}[f]=\frac{2}{\pi} \int_{-1}^{1}\left(1-x^{2}\right)^{-1 / 2} f(x) T_{k}(x) d x \quad(k=0,1, \ldots) ; \tag{1.2}\\
T_{k}(x)=\cos (k \arccos x) . \tag{1.3}
\end{gather*}
$$

The symbol Σ^{\prime} denotes the sum with the first term halved.

For every operator $P \in \mathscr{P}_{n}$ we have

$$
\begin{equation*}
\|P\| \geqslant \sigma_{n} \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.\sigma_{n}=\frac{1}{2} \| S_{0}+S_{n} \right\rvert\, \tag{1.5}
\end{equation*}
$$

(see [2]). Note that $\frac{1}{2}\left(S_{0}+S_{n}\right) \notin \mathscr{P}_{n}$.
Paszkowski [5, p. 84] gave the exact expression

$$
\begin{align*}
\sigma_{n}= & \frac{[n / 2]+1}{2[n / 2]+1}+\frac{1}{\pi}\left(n \sum_{k=1}^{[n / 2]} \frac{1}{(2 k-1)(n-2 k+1)} \cot \frac{(2 k-1) \pi}{2 n}\right. \\
& \left.-\sum_{k=1}^{[(n+1) / 2]} \frac{n-4 k+3}{(2 k-1)(n-2 k+2)} \cot \frac{(2 k-1) \pi}{2 n+2}\right) \tag{1.6}
\end{align*}
$$

and the asymptotic form

$$
\begin{equation*}
\sigma_{n}=\frac{2}{\pi^{2}} \log n+O(1) \tag{1.7}
\end{equation*}
$$

In this paper we investigate the subclass $\mathscr{T}_{n p}(p \geqslant 0)$ of the class \mathscr{P}_{n}, defined as the set of projections of the form

$$
\begin{equation*}
P f=S_{n} f+\sum_{l=1}^{n} a_{n+l}[f] q_{l} \quad(f \in C[-1,1]), \tag{1.8}
\end{equation*}
$$

where $q_{1}, q_{2}, \ldots, q_{p}$ can be arbitrary elements of Π_{n} [3].
Phillips et al. [6] gave a theorem characterizing minimal projections from the class $\mathscr{T}_{{ }_{n p}}$ (see Section 2).
In the present paper we give some conditions which are sufficient in order that an operator $P \in \mathscr{T}_{n p}$ be a minimal projection from the class $\mathscr{T}_{n p}$ for some specified values of n and p. These results (see Section 4) were obtained by application of the theorem of Phillips et al. mentioned above.

As a by-product we have obtained a lower bound for the norm of an arbitrary projection $P \in \mathscr{T}_{n p}$, which is better than that from (1.4).

2. Results of Phillips et al.

The Lebesgue function of the operator $P \in \mathscr{T}_{n p}$ given by (1.8) is the function

$$
\begin{equation*}
\Lambda_{P}(x)=\frac{2}{\pi} \int_{-1}^{1}\left|F_{P}(x, y)\right|\left(1-y^{2}\right)^{-1 / 2} d y \quad(-1 \leqslant x \leqslant 1) \tag{2.1}
\end{equation*}
$$

where $F_{P}(x, y)$ is defined as

$$
\begin{equation*}
F_{p}(x, y)=\sum_{k=0}^{n} T_{k}(x) T_{k}(y)+\sum_{l=1}^{p} q_{l}(x) T_{n+l}(y) \quad(-1 \leqslant x, y \leqslant 1) \tag{2.2}
\end{equation*}
$$

It is known that

$$
\begin{equation*}
\|P\|=\left\|\Lambda_{P}\right\|_{\infty} \tag{2.3}
\end{equation*}
$$

The critical set of Λ_{P} is the set

$$
\begin{equation*}
\operatorname{crit}\left(\Lambda_{P}\right)=\left\{x \in[-1,1] \mid \Lambda_{P}(x)=\left\|\Lambda_{P}\right\|_{\infty}\right\} \tag{2.4}
\end{equation*}
$$

Phillips et al. [6] proved the following.
Theorem 2.1. In order that $P \in \mathscr{T}_{n p}$ be a minimal projection from the class \mathscr{T}_{n} it is necessary and sufficient that

$$
\begin{equation*}
\inf _{x \in \operatorname{crit}\left(\Lambda_{p}\right)} \sum_{l=1}^{p} w_{l}(x) h_{l}(x) \leqslant 0 \tag{2.5}
\end{equation*}
$$

for all choices of $w_{1}, w_{2}, \ldots, w_{p} \in \Pi_{n}$. Here

$$
\begin{equation*}
h_{l}(x)=\int_{-1}^{1} T_{n+l}(y)\left(1-y^{2}\right)^{-1 / 2} \operatorname{sgn} F_{P}(x, y) d y \quad(l=1,2, \ldots, p) \tag{2.6}
\end{equation*}
$$

It is also known that among the minimal projections from $\mathscr{F}_{n g}$ there is a symmetric projection P such that for $f \in C[-1,1]$ and $x \in[-1,1]$ the equation

$$
(P f)(x)=(P g)(-x)
$$

holds, where $g(t)=f(-t)$ for $t \in[-1,1]$. In other words, we have

$$
\inf _{P \in \mathscr{T}_{n D}}\|P\|=\inf _{Q \in \hat{\mathscr{T}}_{n D}}\|Q\|
$$

where $\hat{\mathscr{T}}_{n p}$ denotes the class of all symmetric projections from $\mathscr{F}_{n p}$.
It can be seen that $\hat{\mathscr{T}}_{n p}$ consists of operators defined by formula (1.8) in which $q_{1}, q_{2}, \ldots, q_{n} \in \Pi_{n}$ are such that

$$
\begin{equation*}
q_{l}(-x)=(-1)^{n+t} q_{l}(x) \quad(l=1,2, \ldots, p ;-1 \leqslant x \leqslant 1) \tag{2.7}
\end{equation*}
$$

(see [3]).
The following theorem results from applying the main theorem from [6].

Theorem 2.2. In order that $P \in \hat{\mathscr{T}}_{n p}$ be a minimal projection from the class $\hat{\mathscr{T}}_{n p}$ it is necessary and sufficient that inequality (2.5) holds for all choices of $w_{1}, w_{2}, \ldots, w_{p} \in I_{n}$ such that

$$
\begin{equation*}
w_{l}(-x)=(-1)^{n+l} w_{l}(x) \quad(l=1,2, \ldots, p ;-1 \leqslant x \leqslant 1) \tag{2.8}
\end{equation*}
$$

3. Lemmas

Let the function $D_{n}^{(r)}(n, r=0,1, \ldots)$ be defined by the formula

$$
\begin{equation*}
D_{n}^{(r)}(u)=\sum_{k=0}^{n+2^{r}-1}\left(1-2^{-r}(k-n)_{+}\right) \cos k u \tag{3.1}
\end{equation*}
$$

where

$$
\begin{align*}
a_{+} & =a & & (a>0) \\
& =0 & & (a \leqslant 0) \tag{3.2}
\end{align*}
$$

For $r=0$ formula (3.1) defines the well-known Dirichlet kernel

$$
\begin{equation*}
D_{n}^{(0)}(u)=\sum_{k=0}^{n} \cos k u \quad(n=1,0, \ldots) \tag{3.3}
\end{equation*}
$$

Five lemmas, which we give in this section, state some important properties of $D_{n}^{(r)}$.

Lemma 3.1. For $n, r=0,1, \ldots$ we have

$$
\begin{equation*}
D_{n}^{(r)}(u)=\frac{\sin 2^{r-1} u \sin \left(n+2^{r-1}\right) u}{2^{r}(1-\cos u)} \quad(u \neq 0, \pm 2 \pi, \pm 4 \pi, \ldots) \tag{3.4}
\end{equation*}
$$

Proof. First observe that formula (3.1) can be transformed to the form

$$
D_{n}^{(r)}(u)=2^{-r} \sum_{l=0}^{2^{r}-1} \sum_{k=0}^{n+1} \cos k u
$$

Hence, in view of the identities

$$
\begin{aligned}
\sum_{i=0}^{m} \cos i u & =\frac{\sin \left(m+\frac{1}{2}\right) u}{2 \sin (u / 2)} \\
\sum_{j=1}^{m} \sin \left(j-\frac{1}{2}\right) u & =\frac{1-\cos m u}{2 \sin (u / 2)}
\end{aligned} \quad(u \neq 0, \pm 2 \pi, \pm 4 \pi, \ldots),
$$

formula (3.4) follows.

Let us denote

$$
\begin{equation*}
\rho_{n}^{(r)}=\frac{2}{\pi} \int_{0}^{\pi}\left|D_{n}^{(r)}(u)\right| d u \quad(n, r=0,1, \ldots) \tag{3.5}
\end{equation*}
$$

Using (3.4) one can easily obtain the equation

$$
\begin{equation*}
\rho_{2 m}^{(r)}=\rho_{m}^{(r-1)} \quad(m, r=1,2, \ldots) \tag{3.6}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\rho_{2^{r} m}^{(r)}=\rho_{m}^{(0)} \quad(m, r=1,2, \ldots) \tag{3.7}
\end{equation*}
$$

Obviously, $\rho_{n}^{(0)}$ is the Lebesgue constant (norm) of the operator S_{n} defined by (1.1). As it is known, the formula

$$
\begin{equation*}
\rho_{n}^{(0)}=\frac{1}{2 n+1}+\frac{2}{\pi} \sum_{k=1}^{n} \frac{1}{k} \tan \frac{k}{2 n+1} \quad(n=0,1, \ldots) \tag{3.8}
\end{equation*}
$$

holds (see, e.g., [5, p. 75]).
Before we give a formula for $\rho_{n}^{(r)}(r<1)$, analogous to (3.8), observe that if we represent n in the form

$$
\begin{equation*}
n=2^{w}(2 l+1) \quad(l, w=0,1, \ldots) \tag{3.9}
\end{equation*}
$$

then in view of (3.6) we have

$$
\begin{align*}
\rho_{n}^{(r)} & =\rho_{2 b+1}^{(r-w)} & & (0 \leqslant w \leqslant r), \tag{3.10}\\
& =\rho_{2^{w-r}(2 l+1)}^{(0)} & & (w>r) .
\end{align*}
$$

Thus we have to consider the case of n odd only. For $r=1$ Geddes and Mason [1] gave the formula

$$
\begin{equation*}
\rho_{2 l+1}^{(1)}=\frac{4}{\pi} \sum_{k=0}^{l} \frac{1}{2 k+1} \tan \frac{(2 k+1) \pi}{4 l+4} \quad(l=0,1, \ldots) . \tag{3.11}
\end{equation*}
$$

We prove the following.
Lemma 3.2. For $r=2,3, \ldots$ and $l=0,1, \ldots$ we have

$$
\begin{align*}
\rho_{2 l+1}^{(r)}= & 2^{r-2}(1-s)\left(\frac{2^{r-1} q+1}{N}-1\right) \\
& +\frac{4 s}{\pi} \sum_{k=0}^{i+2^{r-1}-1} \frac{1-2^{1-r}(k-l)_{+}}{2 k+1} \tan ^{s} \frac{(2 k+1) \pi}{2^{r}} \\
& +\frac{2 s}{\pi} \sum_{k=1}^{2 l+2^{r}} \frac{1-2^{-r}(k-n)_{+}}{k} \epsilon_{k} \tag{3.12}
\end{align*}
$$

where

$$
\begin{align*}
& \epsilon_{k}=0 \quad \quad(k=N / d, 3 N / d, \ldots, N) \\
&= \quad(k=2 N / d, 4 N / d, \ldots,(d-1) N / d), \\
&= \tan ^{r} \frac{k q \pi}{2 N}\left(\cos \frac{k\left(2^{r} q+1\right) \pi}{2 N} / \cos \frac{k \pi}{2 N}-1\right) \\
& \quad\left(k=1,2, \ldots, 2 l+2^{r} ; k \neq N / d, 2 N / d, \ldots, N\right), \\
& s=(-1)^{q}, \quad q=\left[N / 2^{r-1}\right], \quad N=2 l+2^{r-1}+1, \tag{3.13}
\end{align*}
$$

and d is the greatest common divisor of the numbers N and q.
Proof. We have to calculate the integral appearing in (3.5). For $n=2 l+1$ ($l=0,1, \ldots$) the function $D_{n}^{(r)}$ is positive at 0 , and, in view of (3.4), changes the sign in the interval $(0, \pi)$ only at the points $i \pi / 2^{r-1}\left(i=1,2, \ldots, 2^{r-1}-1\right)$, $j \pi / N(j=1,2, \ldots, N-1)$. Observe that

$$
\frac{i q \pi}{N}<\frac{i \pi}{2^{r-1}}<\frac{(i q+1) \pi}{N} \quad\left(i=1,2, \ldots, 2^{r-1}-1\right)
$$

where

$$
q=\left[N / 2^{r-1}\right]
$$

the symbol $[x]$ denoting the integer part of x.
Hence

$$
\begin{aligned}
\rho_{n}^{(r)}= & \frac{2}{\pi} \sum_{i=1}^{2^{r-1}}(-1)^{(i-1)(\alpha+1)}\left\{\int_{(i-1) \pi / 2^{r-1}}^{((i-1) q+1) \pi / N} D_{n}^{(r)}(u) d u\right. \\
& \left.+\sum_{j=1}^{q-1}(-1)^{j} \int_{((i-1) q+j) \pi / N}^{((i-1) q+j+1) \pi / N} D_{n}^{(r)}(u) d u+(-1)^{q} \int_{i q \pi / N}^{i \pi / 2^{r-1}} D_{n}^{(r)}(u) d u\right\} \\
= & (-1)^{q} \frac{2}{\pi} \sum_{i=1}^{2^{r-1}}(-1)^{i(q+1)}\left\{I\left(\frac{(i-1) \pi}{2^{r-1}}\right)\right. \\
& \left.+2 \sum_{j=1}^{q}(-1)^{j} I\left(\frac{(i-1) q+j}{N} \pi\right)+(-1)^{\alpha+1} I\left(\frac{i \pi}{2^{r-1}}\right)\right\}
\end{aligned}
$$

where

$$
I(u)=\int_{0}^{u} D_{n}^{(r)}(v) d v
$$

As, in accordance with (3.1), we have

$$
I(u)=\frac{1}{2} u+\sum_{k=1}^{n+2^{r}-1} \frac{1-2^{-r}(k-n)_{+}}{k} \sin k u
$$

we obtain the formula

$$
\begin{equation*}
\rho_{n}^{(r)}=\frac{(-1)^{q}}{\pi}\left(\omega+2 \sum_{k=1}^{n+2^{r}-1} \frac{1-2^{-r}(k-n)_{+}}{k}\left(\alpha_{k}+2 \beta_{k}\right)\right) \tag{3.14}
\end{equation*}
$$

where ω, α_{k}, and β_{k} have the following meanings:

$$
\begin{align*}
\omega= & \sum_{i=1}^{2^{r-1}}(-1)^{i(q+1)}\left\{\frac{(i-1) \pi}{2^{r-1}}\right. \\
& \left.+2 \sum_{j=1}^{q}(-1)^{j} \frac{(i-1) q+j}{N} \pi-(-1)^{q} \frac{i \pi}{2^{r-1}}\right\}, \tag{3.15}\\
\alpha_{k}= & \sum_{i=1}^{2^{r-1}}(-1)^{i(q+1)}\left(\sin \frac{(i-1) \pi}{2^{r-1}}-(-1)^{q} \sin \frac{i \pi}{2^{r-1}}\right), \tag{3.16}\\
\beta_{k}= & \sum_{i=1}^{2^{r-1}}(-1)^{i(q+1)} \sum_{j=1}^{q}(-1)^{j} \sin \frac{((i-1) q+j) k \pi}{N} . \tag{3.17}
\end{align*}
$$

In the remaining part of the proof we transform the expressions occurring on the right-hand sides of (3.15)-(3.17).

Observe that the right-hand side of (3.15) may be rewritten in the form

$$
\begin{aligned}
& \pi\left\{\left(1-(-1)^{g}\right)\left(2^{1-r}-q / N\right) \sum_{i=1}^{2^{r-1}}(-1)^{i(q+1)} i\right. \\
& \left.\quad+\left(\frac{2}{N} \sum_{j=1}^{q}(-1)^{j} j-2^{1-r}+\frac{q}{N}\left(1-(-1)^{q}\right)\right) \sum_{i=1}^{2^{n-1}}(-1)^{i(q+1)}\right\}
\end{aligned}
$$

Hence,

$$
\begin{align*}
\omega & =0 & & (q \text { even }), \\
& =2^{r-1} \pi\left(1-\frac{2^{r-1} q+1}{N}\right) & & (q \text { odd }) \tag{3.18}
\end{align*}
$$

It follows from definition (3.16) that

$$
\alpha_{k}=0 \quad\left(k=2^{r-1} m ; m=1,2, \ldots\right)
$$

As we have the identity

$$
\begin{equation*}
\sum_{i=1}^{m} t^{i} \sin i u=\frac{t \sin u-t^{m+1} \sin (m+1) u+t^{m+2} \sin m u}{1-2 t \cos u+t^{2}} \tag{3.19}
\end{equation*}
$$

it follows that

$$
\begin{aligned}
\alpha_{k}= & 2(-1)^{q+1} \sum_{i=1}^{2^{r-1}-1}(-1)^{i(q+1)} \sin \frac{i k \pi}{2^{r-1}} \\
= & 2(-1)^{q+1} \frac{(-1)^{q+1} \sin \left(k \pi / 2^{r-1}\right)+(-1)^{q+1} \sin \left(\left(2^{r-1}-1\right)\left(k \pi / 2^{r-1}\right)\right)}{2\left(1+(-1)^{q} \cos \left(k \pi / 2^{r-1}\right)\right)} \\
= & \left(1-(-1)^{r}\right) \frac{\sin \left(k \pi / 2^{r-1}\right)}{1+(-1)^{q} \cos \left(k \pi / 2^{r-1}\right)} \\
& \left(k=1,2, \ldots, n+2^{r}-1 ; k \neq 2^{r-1}, 2^{r}, \ldots\right) .
\end{aligned}
$$

Finally we get

$$
\begin{align*}
\alpha_{2 k} & =0 \\
\alpha_{2 k-1} & =2 \tan ^{s} \frac{2 k-1}{2^{r}} \pi \tag{3.20}
\end{align*} \quad\left(k=1,2, \ldots, l+2^{r-1}\right)
$$

where

$$
s=(-1)^{q}
$$

Let d be the greatest common divisor of the numbers N and q. Observe that d is an odd number and that $d=1$ in the case of q even.

Setting $k=h N / d(h=1,2, . ., d)$ in (3.17) we obtain

$$
\beta_{h N / d}=(-1)^{h q} \sum_{i=1}^{2^{r-1}}(-1)^{i((h+1) \alpha+1)} \sum_{j=1}^{q}(-1)^{j} \sin \frac{j h \pi}{d} .
$$

Since

$$
\begin{aligned}
\sum_{i=1}^{2^{r-1}}(-1)^{i((h+1) q+1)} & =0 & & (h \text { odd or } q \text { even }) \\
& =2^{r-1} & & (h \text { even and } q \text { odd })
\end{aligned}
$$

and, in view of (3.19),

$$
\sum_{j=1}^{q}(-1)^{j} \sin \frac{j h \pi}{d}=\frac{(-1)^{q} \sin (h(2 q+1) \pi / 2 d)-\sin (h \pi / 2 d)}{2 \cos (h \pi / 2 d)}
$$

we get

$$
\begin{align*}
\beta_{(2 m+1) N / d} & =0 & \left(m=0,1, \ldots, \frac{d-1}{2}\right) \\
\beta_{2 m N / d} & =-2^{r-1} \tan \frac{m \pi}{d} & \left(m=1,2, \ldots, \frac{d-1}{2}\right) \tag{3.20a}
\end{align*}
$$

Let $k \neq h N / d(h=1,2, \ldots, d)$. Making use of the identities

$$
\begin{aligned}
\sum_{i=0}^{m} t^{i} \sin (i u+v)= & \frac{\left\{\begin{array}{r}
\sin v+t \sin (u-v) \\
-t^{m+1} \sin ((m+1) u+v)+t^{m+2} \sin (m u+v)
\end{array}\right\}}{1-2 t \cos u+t^{2}}, \\
\sum_{i=0}^{m} t^{i} \sin (i u+v)= & \left\{\frac{1-t^{2}}{2} \sin v+\frac{t}{2}(\sin (u-v)+\sin (u+v))\right. \\
& +\left(t^{m+2}-\frac{1+t^{2}}{2}\right) \sin (m u+v) \\
& +t\left(\frac{1}{2}-t^{m}\right) \sin ((m+1) u+v) \\
& \left.+\frac{t}{2} \sin ((m-1) u+v)\right\} /\left(1-2 t \cos u+t^{2}\right),
\end{aligned}
$$

we transform in turn the right-hand side of (3.17) to the form

$$
\begin{aligned}
& \sum_{i=1}^{2^{r-1}}(-1)^{i(q+1)} \frac{(-1)^{q} \sin \frac{(2 i q+1) k \pi}{2 N}-\sin \frac{(2(i-1) q+1) k \pi}{2 N}}{2 \cos \frac{k \pi}{2 N}} \\
& =\frac{(-1)^{q}}{\cos \frac{k \pi}{2 N}} \sum_{i=0}^{2^{r-1}}(-1)^{i(q+1)} \sin \frac{(2 i q+1) k \pi}{2 N} \\
& =
\end{aligned}
$$

Here the symbol $\Sigma^{\prime \prime}$ denotes the sum with the first and the last terms halved.
Thus we obtain the formula

$$
\begin{equation*}
\beta_{k}=\frac{1}{2} \tan ^{s} \frac{k q \pi}{2 N}\left(\cos \frac{k\left(2^{r} q+1\right) \pi}{2 N}-\cos \frac{k \pi}{2 N}\right) / \cos \frac{k \pi}{2 N} \tag{3.21}
\end{equation*}
$$

Formula (3.12) results from substituting (3.18)-(3.21) into (3.14).

Values of $\rho_{n}^{(r)}$ for $r=0,1, \ldots, 5$ and for various n were computed via formulas (3.8), (3.10)-(3.12) and are listed in the Table I. The last column contains values of σ_{n} defined by (1.6).

TABLE I

n	$\rho_{n}^{(0)}$	$\rho_{n}^{(1)}$	$\rho_{n}^{(2)}$	$\rho_{n}^{(3)}$	$\rho_{n}^{(4)}$	$\rho_{n}^{(5)}$	σ_{n}
1	1.436	1.273	1.144	1.074	1.037	1.019	1.000
2	1.642	1.436	1.273	1.144	1.074	1.037	1.028
3	1.778	1.552	1.357	1.126	1.065	1.035	1.069
4	1.880	1.642	1.436	1.273	1.144	1.074	1.104
5	1.961	1.716	1.495	1.316	1.122	1.058	1.135
6	2.029	1.778	1.552	1.357	1.126	1.065	1.162
7	2.087	1.832	1.598	1.348	1.153	1.087	1.186
8	2.138	1.880	1.642	1.436	1.273	1.144	1.208
9	2.183	1.923	1.680	1.466	1.295	1.106	1.227
10	2.223	1.961	1.716	1.495	1.316	1.122	1.245
11	2.260	1.997	1.747	1.495	1.308	1.129	1.261
12	2.294	2.029	1.778	1.552	1.357	1.126	1.276
13	2.325	2.059	1.806	1.575	1.325	1.149	1.291
14	2.354	2.087	1.832	1.598	1.348	1.153	1.304
15	2.381	2.113	1.856	1.601	1.352	1.165	1.316
16	2.406	2.138	1.880	1.642	1.436	1.273	1.328
17	2.430	2.161	1.902	1.661	1.451	1.284	1.339
18	2.453	2.183	1.923	1.680	1.466	1.295	1.349
19	2.474	2.204	1.942	1.685	1.464	1.289	1.359
20	2.494	2.223	1.961	1.716	1.495	1.316	1.369
32	2.681	2.406	2.138	1.880	1.642	1.436	1.458
48	2.843	2.567	2.294	2.029	1.778	1.552	1.536
64	2.959	2.681	2.406	2.138	1.880	1.642	1.593
80	3.049	2.770	2.494	2.223	1.961	1.716	1.637
256	3.518	3.238	2.959	2.681	2.406	2.138	1.870

Let us define

$$
\begin{align*}
\gamma_{n r l}= & \int_{0}^{\pi} \cos (n+l) u \operatorname{sgn} D_{n}^{(r)}(u) d u \\
& \left(n, r=0,1, \ldots ; l=1,2, \ldots, 2^{r}-1\right) \tag{3.22}
\end{align*}
$$

Lemma 3.3. For $n=2^{r-1} m(m, r=1,2, \ldots)$ we have

$$
\begin{equation*}
\gamma_{n r l}=0 \quad\left(l=1,2, \ldots, 2^{r}-1\right) \tag{3.23}
\end{equation*}
$$

Proof. Let us denote the integrand from the right-hand side of (3.22) by $H_{l}(u)$ (n, r fixed), i.e.,

$$
H_{l}(u)=\cos (n+l) u \operatorname{sgn} D_{n}^{(r)}(u) \quad\left(l=1,2, \ldots, 2^{r}-1\right)
$$

It can be deduced from (3.4) that

$$
\operatorname{sgn} D_{n}^{(r)}(u)=\operatorname{sgn}\left(\sin 2^{r-1} u \cdot \sin 2^{r-1}(m+1) u\right)
$$

Let l be any number from the set $1,2, \ldots, 2^{r}-1$. Representing l in the form

$$
1=2^{s}(2 t+1)
$$

where $0 \leqslant s \leqslant r-1,0 \leqslant t \leqslant 2^{r-s-1}-1$, and using the fact that the function H_{l} has a period equal to $\pi / 2^{s-1}$, we obtain the equation

$$
\gamma_{n v l}=2^{s-1} \int_{0}^{\pi / 2^{s-1}} H_{l}(u) d u
$$

In view of the equality

$$
H_{l}\left(\pi / 2^{s}-u\right)=-H_{l}\left(\pi / 2^{s}+u\right) \quad\left(0 \leqslant u \leqslant \pi / 2^{s}\right)
$$

the above integral vanishes.
The last two lemmas show the connection of the functions $D_{n}^{(r)}$ with projection operators discussed in preceding sections.

Lemma 3.4. Let $P \in \mathscr{T}_{n p}$ be defined by (1.8) for $n=2^{r-1} m, p=2^{r}-1$ ($m, r=1,2, \ldots$), and for $q_{1}, q_{2}, \ldots, q_{p} \in \Pi_{n}$ such that

$$
\begin{equation*}
q_{l}(1)=1-2^{-r} l \quad(l=1,2, \ldots, p) . \tag{3.24}
\end{equation*}
$$

Then we have

$$
\begin{align*}
F_{P}(1, \cos u) & =D_{n}^{(r)}(u), \tag{3.25}\\
\Lambda_{P}(1) & =\rho_{m}^{(1)}, \tag{3.26}
\end{align*}
$$

the notation being that of (2.1), (2.2), (3.1), and (3.5).
Proof. In accordance with (2.2) we have the formula

$$
F_{P}(1, y)=\sum_{k=0}^{n} T_{k}(y)+\sum_{l=1}^{n}\left(1-l 2^{-r}\right) T_{n+l}(y),
$$

where we used (3.24). Equation (3.25) follows from this formula by substituting $y=\cos u$, and comparing the resulting expression on the righthand side with definition (3.1).

Equation (3.26) can be easily derived from (2.1), (3.25), (3.5), and (3.6):

$$
\begin{aligned}
\Lambda_{P}(1) & =\frac{2}{\pi} \int_{-1}^{1}\left|F_{P}(1, y)\right|\left(1-y^{2}\right)^{-1 / 2} d y=\frac{2}{\pi} \int_{0}^{\pi}\left|D_{n}^{(r)}(u)\right| d u \\
& =\rho_{n}^{(r)}=\rho_{m}^{(1)} .
\end{aligned}
$$

Lemma 3.5. Let $P \in \hat{\mathscr{T}}_{n p}$ be a symmetric projection defined by (1.8) for $n=2^{r-1} m+\nu, p=2^{r}-2+\delta-\nu(m=1,2, \ldots ; r=2,3, \ldots ; \delta, \nu=0,1)$, and for $q_{1}, q_{1}, \ldots, q_{p} \in \Pi_{n}$, satisfying (2.7) and such that

$$
\begin{equation*}
q_{2 l-v}(0)=(-1)^{l+[n / 2]}\left(1-2^{1-r} l\right) \quad\{l=1,2, \ldots,[(p+\nu) / 2]\} \tag{3.27}
\end{equation*}
$$

Then we have

$$
\begin{align*}
F_{P}\left(0, \sin \frac{u}{2}\right) & =D_{[n / 2]}^{(r-1)}(u), \tag{3.28}\\
\Lambda_{P}(0) & =\rho_{m}^{(1)} \tag{3.29}
\end{align*}
$$

Proof. It follows from (2.7) that

$$
q_{2 l+\nu-1}(0)=0 \quad\{l=1,2, \ldots,[(p+\nu) / 2]\}
$$

Formula (2.2) implies the equation

$$
F_{P}(0, y)=\sum_{k=0}^{[n / 2]}(-1)^{k} T_{2 k}(y)+\sum_{l=1}^{[(p+v) / 2]} q_{2 l-v}(0) T_{n+2 l-\nu}(y)
$$

Substitution of $y=\sin (u / 2)\{=\cos ((\pi-u) / 2)\}$ yields the equality

$$
F_{P}\left(0, \sin \frac{u}{2}\right)=\sum_{k=0}^{[n / 2]} \cos k u+\sum_{l=1}^{[(p+p) / 2]}\left(1-2^{r-1} l\right) \cos ([n / 2]+l) u
$$

where we used assumption (3.27). The right-hand side of the above formula is $D_{[n / 2]}^{(r-1)}(u)$ (see (3.1)). Relation (3.28) is proved.

Formula (3.29) follows easily from (2.1), (3.28), (3.5), and (3.6):

$$
\begin{aligned}
A_{P}(0) & =\frac{2}{\pi} \int_{-1}^{1}\left|F_{P}(0, y)\right|\left(1-y^{2}\right)^{-1 / 2} d y=\frac{1}{\pi} \int_{-\pi}^{\pi}\left|D_{[n / 2]}^{(r-1)}(u)\right| d u \\
& =\rho_{[n / 2]}^{(r-1)}=\rho_{m}^{(1)} .
\end{aligned}
$$

4. Theorems

Now, we are able to prove the following.
Theorem 4.1. Let $r=1,2, \ldots$ and let M_{r} denote the smallest natural number such that the inequality

$$
\begin{equation*}
\rho_{M_{r}}^{(1)} \geqslant \sigma_{N_{r}} \tag{4.1}
\end{equation*}
$$

holds, where $N_{r}=2^{r-1} M_{r}$, and the notation used is that of (3.11) and (1.5). Let $P \in \mathscr{T}_{n p}$ be an operator defined by (1.8) for $n=2^{r-1} m, p=2^{r}-1$ $\left(m=M_{r}, M_{r}+1, \ldots ; r=1,2, \ldots\right)$, and for $q_{1}, q_{2}, \ldots, q_{p} \in \Pi_{n}$, satisfying (3.24). If $1 \in \operatorname{crit}\left(\Lambda_{p}\right)$ then P is a minimal projection from $\mathscr{T}_{n p}$ and has the norm

$$
\begin{equation*}
\|P\|=\rho_{m}^{(\mathrm{i})} \tag{4.2}
\end{equation*}
$$

Proof. The sequences σ_{n} and $\rho_{n}^{(1)}$ are monotonically increasing. Comparing the asymptotic formula

$$
\begin{equation*}
\rho_{m}^{(1)}=\frac{4}{\pi^{2}} \log m+O(1) \tag{4.3}
\end{equation*}
$$

(see [1]) and

$$
\begin{equation*}
\sigma_{2^{r-1} m}=\frac{2}{\pi^{2}} \log m+\frac{2 r-2}{\pi^{2}} \log 2+O(1) \tag{4.4}
\end{equation*}
$$

(cf. (1.7)) we see that for r fixed and for m sufficiently large we have

$$
\begin{equation*}
\rho_{m}^{(\underline{1})} \geqslant \sigma_{2^{r-1} m_{m}} . \tag{4.5}
\end{equation*}
$$

Thus, for $r=1,2, \ldots$ there exists the number M_{r} defined above.
We show that for an operator $P \in \mathscr{T}_{n p}$ satisfying the assumptions of the theorem the equation

$$
\begin{equation*}
h_{l}(1)=0 \quad(l=1,2, \ldots, p) \tag{4.6}
\end{equation*}
$$

holds, where h_{l} is the function defined by (2.6). By virtue of Theorem 2.1 it follows then that P is a minimal projection from $\mathscr{T}_{n p}$.

In order to prove relation (4.6) observe that we have, in view of (2.6), (3.25), and (3.22),

$$
\begin{aligned}
h_{l}(1) & =\int_{-1}^{1} T_{n+l}(y) \operatorname{sgn} F_{P}(1, y)\left(1-y^{2}\right)^{-1 / 2} d y \\
& =\int_{0}^{\pi} \cos (n+l) u \operatorname{sgn} D_{n}^{(r)}(u) d u=\gamma_{n r l} \quad(l=1,2, \ldots, p)
\end{aligned}
$$

Hence, by virtue of Lemma 3.3, Eq. (4.6) follows.
Formula (4.2) follows from (2.3), (2.4), and (3.26).

Remark 1. The inspection of Table I given in Section 3 shows that

$$
\begin{aligned}
& M_{1}=M_{2}=M_{3}=M_{4}=1 \\
& M_{5}=3
\end{aligned}
$$

It seems that the sequence M_{r} increases rather fast. For instance we have $M_{6}=8$.

Remark 2. It is clear that for $m<M_{r}$ the thesis of the theorem fails, as in this case we have $\|P\|=\rho_{m}^{(1)}<\sigma_{n}$, which is, in view of (1.4), impossible.

Remark 3. In [3] we have considered the projection $C_{n} \in \mathscr{T}_{n 1}$ given by

$$
\begin{equation*}
C_{n}=S_{n}+(1 / 2 n) a_{n+1}[\cdot] U_{n-1} \tag{4.7}
\end{equation*}
$$

where $U_{n-1}(x)=\sin n u / \sin u(x=\cos u)$. Here $q_{1}(1)=(1 / 2 n) U_{n-1}(1)=\frac{1}{2}$, which means that Eq. (3.24) is satisfied.

We have established numerically that $1 \in \operatorname{crit}\left(\Lambda_{C_{n}}\right)$ for $n=1,2,3$. The calculations carried out by Phillips et al. [6] confirm this result.

Using the above theorem we conclude that C_{n} is a minimal operator from $\mathscr{T}_{n 1}$ for $n=1,2,3$.

Obviously, we have
Corollary 4.1. For $n=2^{r-1} m$ and $p=2^{r}-1 \quad\left(m=M_{r}, M_{r+1}, \ldots\right.$; $r=1,2, \ldots$) we have

$$
\inf _{P \in \mathscr{F}}^{n p} 10(1)=\rho_{m}^{(1)}
$$

The next theorem of this section is related to symmetric projections.
Theorem 4.2. Let

$$
\begin{align*}
M_{v r} & =M_{r} \quad(v=0) \tag{4.8}\\
& =M_{r}^{\prime} \quad(v=1)
\end{align*} \quad(r=2,3, \ldots,)
$$

where M_{r} is defined as in Theorem 4.1, and M_{r}^{\prime} is the smallest natural number such that

$$
\rho_{M_{r}^{\prime}}^{(1)} \geqslant \sigma_{N_{r}^{\prime}} \quad\left(N_{r}^{\prime}=2^{r-1} M_{r}^{\prime}+1\right)
$$

Let $P \in \hat{\mathscr{T}}_{n p}$ be a symmetric projection given by (1.8) for $n=2^{r-1} m+\nu$, $p=2^{r}+\delta-\nu-2\left(m=M_{\nu r}, M_{\nu r}+1, \ldots ; r=2,3, \ldots ; \delta, \nu=0,1\right)$, and for $q_{1}, q_{2}, \ldots, q_{p} \in \Pi_{n}$, satisfying conditions (2.7) and (3.27). If $0 \in \operatorname{crit}\left(\Lambda_{P}\right)$ then P is a minimal projection from $\hat{\mathscr{T}}_{n p}$ and has the norm given by formula (4.2).

Proof. The asymptotic forms (4.3) and (4.4) imply that for m sufficiently large we have

$$
\rho_{m}^{(1)} \geqslant \sigma_{2} r-1_{m+1}
$$

(r being fixed). This means that M_{r}^{\prime}, defined in the theorem, actually exists for any $r=2,3, \ldots$.

Using definition (2.6) and Lemmas 3.5 (Eq. (3.28)) and 3.3 we derive

$$
\begin{aligned}
h_{2 l-v}(0)= & \int_{-1}^{1} T_{n+2 l+v}(y) \operatorname{sgn} F_{P}(0, y)\left(1-y^{2}\right)^{-1 / 2} d y \\
= & \int_{0}^{\pi} \cos ([n / 2]+l) u \operatorname{sgn} D_{[n / 2]}^{(r-1)}(u) d u=\gamma[n / 2], r-1, l=0 \\
& \quad(l=1,2, \ldots,[(p+v) / 2])
\end{aligned}
$$

Let $w_{1}, w_{2}, \ldots, w_{p} \in \Pi_{n}$ satisfy (2.7). Then we have

$$
\sum_{i=1}^{p} w_{i}(0) h_{i}(0)=\sum_{l=1}^{[(p+\nu) / 2]} w_{2 l-v}(0) h_{2 i-v}(0)=0
$$

and, by virtue of Theorem $2.2, P$ is a minimal projection from $\hat{\mathscr{T}}_{n D}$.
In view of (2.3), (2.4), and Lemma 3.5 (formula (3.29)) we have

$$
\|P\|=\Lambda_{P}(0)=\rho_{m}^{(1)}
$$

Remark 4. The calculations performed show that

$$
M_{r}^{\prime}=M_{r} \quad(r=1,2, \ldots, 6)
$$

Corollary 4.2. For $n=2^{r-1} m+\nu$ and $p=2^{r}+\delta-\nu-2\left(m=M_{v r}\right.$, $\left.M_{v r}+1, \ldots ; r=2,3, \ldots ; \delta, v=0,1\right)$ we have

$$
\inf _{Q \in \hat{\mathscr{T}}_{n j}} \Lambda_{Q}(0)=\rho_{m}^{(\mathbb{(1)}}
$$

As a simple consequence of Corollaries 4.1 and 4.2 we obtain the following.
Theorem 4.3. If $p \in \mathscr{T}_{n p}$, for either $n=1,2, \ldots$ and $p=1$ or $n=$ $2^{r-1} m+v$ and $p=2^{r}+\delta-v-2 \quad\left(m=M_{v r}, M_{v r}+1, \ldots ; r=2,3, \ldots\right.$; $\delta, \nu=0,1$), then P satisfies the inequality

$$
\begin{array}{rll}
\|P\| & \geqslant \rho_{n}^{(1)} & (p=1) \\
& \geqslant \rho_{m}^{(1)} & (p>1) .
\end{array}
$$

Acknowledgment

The author wishes to thank Professor S. Paszkowski for helpful comments.

References

1. K. O. Geddes and J. C. Mason, Polynomial approximation by projections on the unit circle, SLAM J. Numer. Anal. 12 (1975), 111-120.
2. M. Golomb, Optimal and nearly-optimal linear approximations, in "Approximation of Functions" (Proceedings, Symposium on Approximation of Functions, General Motors Research Laboratories, Warren, Mich., 1964) (H. L. Garabedian, Ed.), pp. 83-100, Elsevier, Amsterdam, 1965.
3. S. Lewanowicz, A projection connected with the Fourier-Chebyshev operator, Report N-1, Inst. of Computer Science, University of Wrocław, August 1976; Bull. Acad. Polon. Sci. 26 (1978), 727-732.
4. P. D. Morris and E. W. Cheney, On the existence and characterization of minimal projections, J. Reine Angew. Math. 270 (1974), 61-76.
5. S. Paszkowski, "Zastosowania numeryczne wielomianów i szeregów Czebyszewa," PWN-Polish Scientific Publishers, Warszawa, 1975.
6. G. M. Phillips, J. H. McCabe, and E. W. Cheney, A mixed-norm bivariate approximation problem with application to Lewanowicz operators, Report CNA-127, Center for Numerical Analysis, University of Texas at Austin, October 1977; in "Multivariate Approximation" (D. C. Handscomb, Ed.), Academic Press, New York/London, 1978.
