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1. INTRODUCTION

Let .9n denote the class of all projections, i.e., operators which are bounded
and idempotent, mapping the space C[-1, 1] onto the subspace IIn of
polynomials of degree ::::; n.

The quality of the approximations obtained from a projection P EO [JJJ n is
governed by the inequality

111- Pilioo ::::; (1 + P II) En(f),

where En(f) is the error of the best approximation ofI by elements of
It is known [4] that there exists P* EO [JJJn such that

IIP*II::::; IIPll

for all P EO :?J!n . Such a p* is called a minimal projection from the class :?J!n .
Discovering such a projection is, however, very difficult. The complete solu
tion to this problem, even in the case n = 2, remains unknown.

The Fourier-Chebyshev operator Sn EO :?J!n is defined by

where

n

Snl = I' ak[f] Tk
k~O

(f EO C[-1, 1J), (l

2 IIa,eUJ = - (l - X2)-1/2 f(x) Tk(x) dx
7T' -1

Tk(x) = cos(k arccos x).

(k = 0, 1, ...); (1.2)

(l

The symbol 2.:' denotes the sum with the first term halved.
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For every operator P E fJJJn we have

(1.4)

where

(1.5)

(see [2]). Note that t(So + Sn) rf= fJJJn .
Paszkowski [5, p. 84] gave the exact expression

[n(2] + 1 1 ( [n/2] 1 (2k - 1) 7T
Un = 2[n/2J + 1 + --:;;: n If1(2k - 1)(n - 2k + 1) cot 2n

n - 4k + 3 (2k - 1) 7T)
-=-=----,-,,-,--~-----=-c- cot -'-=0--""--::,-----
(2k - 1)(n - 2k + 2) 2n + 2

and the asymptotic form

2
Un = 9 log n + 0(1).

7T~

(1.6)

(1.7)

In this paper we investigate the subclass .'7;.p (p ~ 0) of the class fJJJn ,

defined as the set of projections of the form

p

Pf = Snf + L an+l[f] ql
1~1

(f E C[-'-'-I, 1]), (1.8)

where ql , q2 ,... , qp can be arbitrary elements of lln [3].
Phillips et al. [6] gave a theorem characterizing minimal projections from

the class .'7;.p (see Section 2).
In the present paper we give some conditions which are sufficient in order

that an operator P E.'7;.p be a minimal projection from the classffnp for
some specified values of nand p. These results (see Section 4) were obtained
by application of the theorem of Phillips et al. mentioned above.

As a by-product we have obtained a lower bound for the norm of an
arbitrary projection P E.'7;.p , which is better than that from (1A).

2. RESULTS OF PHILLIPS et al.

The Lebesguefunction of the operator P E.'7;.p given by (1.8) is the function

2 flAp(x) = - IFp(x, Y)I (1 - y 2)-1/2 dy
7T -1 .

(-1 :(; x :(; 1), (2.1)
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where FAX, y) is defined as

n p

Fp(x, y) = I' Tk(x) Tk(y) + I qz(x) Tn+l(Y)
7c~O 1=1

It is known that

The critical set of A p is the set
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(-1 :( x, Y :( 1). (2.2)

(2.3)

Phillips et al. [6] proved the following.

(2.4)

TH'EOREM 2.1. In order that P E §"np be a minimal projection from the
class ~'P it is necessary and sufficient that

for all choices ofw1 , w2 , ••• , w'P Elln . Here

1

hlx) = f Tn+l(y)(l ~ y2)'-1/2sgn Fp(x, y) dy
-1

(2.5)

(l = 1, 2,... , p). (2.6)

It is also known that among the minimal projections from ~p there is a
symmetric projection P such that for fE C[-1, 1] and XE [-1,1] the
equation

(Pf)(x) = (Pg)(-x)

holds, where get) = f(-t) for t E [-1, 1]. In other words, we have

inf II P II = inf II Q II,
PEfT'lI.P QE;-np

where ~p denotes the class of all symmetric projections from ~p •

It can be seen that ~'P consists of operators defined byformula (1.8) in
which Q1, Q2 , .•. , qn Elln are such that

(I = 1,2,... , p; -1 ~ x .:;S; 1) (2.7)

(see [3]).
The following theorem results from applying the main theorem from [6].
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TBEOREM 2.2. In order that P E:f;.p be a minimal projection from the
class :y;'p it is necessary and sufficient that inequality (2.5) holds for all choices
O/W1' W 2 , ... , Wp Elln such that

(I = 1, 2, ...,p; -1 :'(; x:'(; 1). (2.8)

3. LEMMAS

Let the function Df:) (n, r = 0, 1, ...) be defined by the formula

n+2'-1

D~)(u) = I' (1 - 2-r(k - n)+) cos ku,
k~O

where

(3.1)

=0
(a> 0),

(a < 0). (3.2)

For r = °formula (3.1) defines the well-known Dirichlet kernel

n

D~o)(u) = I' cos ku
k=O

(n = 1,0,...). (3.3)

Five lemmas, which we give in this section; state some important properties
of Df:).

LEMMA 3.1. For n, r = 0, I, ... we have

(u =1= 0, ±27T, ±47T,...). (3.4)

Proof First observe that formula (3.1) can be transformed to the form

2r_1 n+1

D~)(u) = 2-r I I' cos ku.
1=0 k=O

Hence, in view of the identities

m sin(m + ~) ut:: cos iu = 2 sin(uj2)

(u =1= 0, ±27T, ±47T,...),
m 1 - cos mu
j~ sin(j - t) u = 2 sin(uj2)

formula (3.4) follows. I
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Let us denote

P:) = 2 f" In:)(u) I du
7T 0

(n, r = 0, 1, ...). (3.5)

Using (3.4) one can easily obtain the equation

which implies

(r) (r-1)
P2m = Pm

(r) p(O)
P2'm = m

(m, r = 1,2,...),

(m, r = 1, 2, ...).

(3.6)

(3.7)

Obviously, p~) is the Lebesgue constant (norm) of the operator Sn defined
by (1.1). As it is known, the formula

(0) 1 2 ~ 1 k
Pn = 2n + 1 + -;; "'::1 k tan 2n + 1 (n = 0, 1,...) (3.8)

holds (see, e.g., [5, p. 75]).
Before we give a formula for p!;> (r < 1), analogous to (3.8), observe that if
we represent n in the form

then in view of (3.6) we have

(r) (r-w)
Pn = P2!+l

(0)
= P2W -'(2!+l}

(I, w = 0, 1,...)

(0 :;:;:; w :;:;:; r),

(w > r).

(3.9)

(3.10)

Thus we have to consider the case of n odd only. For r = I Geddes and
Mason [1] gave the formula

(1) 4 ~ 1 (2k + 1) 7T

P2l+l = -;; L. 2k I 1 tan 41 + 4
1<=0 T .

We prove the following.

(l = 0, 1,...). (3.H)

LEMMA 3.2. For r = 2,3,... and 1 = 0, 1,... we have

(r) _ 2'-2(1 ) ( 2
r
-

1
q + 1 _ 1)

P2!+l - - 8 N

48 1+2'-1_1 1 - 21- r (k - 1)+ s (2k + 1) 7T

+ - L 2k -+- 1 tan 2r
n k=O I

(3.12)
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where

€k = °
k= -2r tan

2N

S. LEWANOWICZ

(k = Njd, 3Njd, , N),

(k = 2Njd, 4Njd, , (d - 1) Njd),

= tanS ~~ (cos k(2
rq

2
; 1) 7T Icos ;; - 1)

(k = 1, 2,... , 21 + 2r ; k =1= Njd, 2N/d,... , N),

s = (-I)Q, q = [Nj2r- 1], N = 21 + 2r - 1 + 1,

(3.13)

and d is the greatest common divisor of the numbers Nand q.

Proof We have to calculate the integral appearing in (3.5). For n = 21+)
(I = 0, 1,...) the function Dj[} is positive at 0, and, in view of (3.4), changes the
sign in the interval (0, 7T) only at the points i7T/2r- 1 (i = 1, 2,... , 2r - 1 - 1),
j7T/N (j = 1,2,... , N - 1). Observe that

where

iq7T i7T (iq + 1) 7T

N < 2r - 1 < N (i = 1,2,... , 2r - 1 - 1),

the symbol [x] denoting the integer part of x.
Hence

where

leu) = r D:)(v) dv.
o
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As, in accordance with (3.1), we have

I( )
_! + n+.f-l 1 - 2-r(k - n)+ . k

u - 2 u 1... k sm u,
k~l

we obtain the formula
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where w, (Xk, and (31£ have the following meanings:

+ 2 f (-I)i (i - I) q + j _ (-l)q~l
.f..., N 7T 2r - 1 l'
J~l

2r -l ..

(Xk = '\ (_I)i(q+l) (sin (z - 1) 7T _ (-I)q sin~)
f..., 2r-, 2r-1 '
.~l

(3.15)

(3.16)

(3.17)

In the remaining part of the proof we transform the expressions occurring
on the right-hand sides of (3.15)-(3.17).

Observe that the right-hand side of (3.15) may be rewritten in the form

7T )(1 - (-I)q)(21-r - qlN) 2i (_I)i(q+1) i
I i~l

+ (~ it (-I)ij - 21
-

r + ~ (1 - (-I)q)) :~: (_I)i(Q+1l\.

Hence,

W = 0

= 2r- 17T (1 _ 2r-l~+ 1)

It follows from definition (3.16) that

(q even),

(q odd). (3.18)

(J<; = 2r - 1m; m = 1,2,...).
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As we have the identity
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m . '. t sin u - tm+1 sin(m + 1) u + tm
+2 sin mu (3.19)I t~ sm lU = 1 2 + 2 '

i~l - t cos u t

it follows that

2~1_1 K
Q(k = 2(-1 )a+1 I (-1 )i(a+1) sin ~r:

i=1

(-1 )q+l sin(br/2r - 1) + (-1 )a+1 sin«2r
-.C

1 - 1)(br/2r- 1»
= 2(-1)a+

1
2(1 + (-l)q cos(br/2r 1»

_ Ie sin(k7T/2r- 1)

- (1 - (-1) ) 1 + (-l)q COS(k7T/2r-1)

(k = 1,2,... , n + 2r - 1; k 0/:- 2r -1, 2r , ...).

Finally we get

2k - 1
CX21e-1 = 2 tans 2r 7T

where

(k = 1, 2,... , 1+ 2r- 1), (3.20)

Let d be the greatest common divisor of the numbers Nand q. Observe
that d is an odd number and that d = 1 in the case of q even.

Setting k = hNJd (h = 1, 2,..., d) in (3.17) we obtain

9.1"-1

fJhNld = (-I)1lq ~I (-I)i«h+1)q+l) ±(-I)i sin j:7T .
i=l i=1

Since

2,-1

I (_1)i«h+l)a+1 ) = 0
i-I

and, in view of (3.19),

(h odd or q even)

(h even and q odd),

~ ( l)j . jhn _ (-l)q sin(h(2q + 1) 7T/2d) - sin(h7T/2d)
L, - SIll - - -'-----"---'-'-";:;:-'-~----'oc~----'--'---:..

i=1 d 2 cos(hn/2d) ,
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we get

p _ 2r- 1 m7T
fJ2mN fd - - tan d

(m = 0, 1,... , d 2 1 ),

(
d - 1 )m = 1,2,... , 2 .

(3.20a)

sin(u + v))

Let k *" hNjd (h = 1, 2,..., d). Making use of the identities

,sin v + t sin(u - v) I
~ i . (. + ) _ I - tm+1 sin«m + 1) U + v) + tm+2 sin(mu + v)l
L., t sm xu . v - 1 2 -I- 2 '
i~O - t cos U I t

m, " ., \ 1 - t 2 . . t .;L' t" sm(lU T v) = 1 2 SIll V + 2 (SIll(U - v)
"~O

+ (tm+2 _ 1 ~ t
2

) sin(mu v)

+ t G- tm)sin«m + 1) u + v)

+ ~ sin«m - 1) u + v)l!(1 - 2t cos u + t 2
),

we transform in turn the right-hand side of (3.17) to the form

( 1)
q • (2iq + 1) k7T . (2(i - 1) q + 1) k7T

2,'-1 - SIll 2N ' - SIll 2N
I (~l)i(q+l) -----------;--------
i=l 2 k7T

cos 2N

21'-1

= (-l)q ""(_1)i(q+l) . (2iq + 1) k7T
k7T !-- SIll 2N

cos _ .=0
2N

( 1) .' kq7T ( k(2rq + 1) 7T k7T )
- q SIll -'~,~ cos - cos --

N 2N' 2N

Here the symbol "L" denotes the sum with the first and the last terms halved.
Thus we obtain the formula

_ I s kq7T (' k(2 rq + 1) 7T k7T)j k7T
~k - 2 tan 2N cos 2N -cos 2N cos 2N . (3.21)

Formula (3.12) results from substituting (3.18)-(3.21) into (3.14). I
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Values of p~) for r = 0, 1,... , 5 and for various n were computed via
formulas (3.8), (3.10)-(3.12) and are listed in the Table 1. The last column
contains values of an defined by (1.6).

TABLE I

n p~O) p~l) p~2) p~3) p~4) p~5) an

1 1.436 1.273 1.144 1.074 1.037 1.019 LOOO
2 1.642 1.436 1.273 1.144 1.074 1.037 1.028
3 1.778 1.552 1.357 1.126 1.065 1.035 1.069
4 1.880 1.642 1.436 1.273 1.144 1.074 1.104
5 1.961 1.716 1.495 1.316 1.122 1.058 1.135
6 2.029 1.778 1.552 1.357 1.126 1.065 1.162
7 2.087 1.832 1.598 1.348 1.153 1.087 1.186
8 2.138 1.880 1.642 1.436 1.273 1.144 1.208
9 2.183 1.923 1.680 1.466 1.295 1.106 1.227

10 2.223 1.961 1.716 1.495 1.316 1.122 1.245
11 2.260 1.997 1.747 1.495 1.308 1.129 1.261
12 2.294 2.029 1.778 1.552 1.357 : 1.126 1.276
13 2.325 2.059 1.806 1.575 1.325 1.149 1.291
14 2.354 2.087 1.832 1.598 1.348 1.153 1.304
15 2.381 2.113 1.856 1.601 1.352 1.165 1.316
16 2.406 2.138 1.880 1.642 1.436 1.273 1.328
17 2.430 2.161 1.902 1.661 1.451 1.284 1.339
18 2.453 2.183 1.923 1.680 1.466 1.295 1.349
19 2.474 2.204 1.942 1.685 1.464 1.289 1.359
20 2.494 2.223 1.961 1.716 1.495 1.316 1.369
32 2.681 2.406 2.138 1.880 1.642 1.436 1.458
48 2.843 2.567 2.294 2.029 1.778 1.552 1.536
64 2.959 2.681 2.406 2.138 1.880 1.642 1.593
80 3.049 2.770 2.494 2.223 1.961 1.716 1.637

256 3.518 3.238 2.959 2.681 2.406 2.138 1.870

Let us define

Ynrl = rcos(n + I) u sgn D~)(u) du

(n, r = 0, 1,... ; l = 1, 2,... , 2r - 1). (3.22)

LEMMA 3.3. For n = 2r- 1m (m, r = 1, 2, ...) we have

Ynrl = ° (I = 1, 2, ... , 2r - 1). (3.23)

Proof Let us denote the integrand from the right-hand side of (3.22) by
H1(u) (n, r fixed), i.e.,

H1(u) = cos(n + I) u sgn D~)(u) (l = 1,2,..., 2r - 1).
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It can be deduced from (3.4) that

sgn D~)(u) = sgn(sin 2r- 1u . sin 2r-1(m 1) u).
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Let 1be any number from the set 1, 2, ... , 21' - 1. Representing I in the form

1 = 28(2t + 1),

where 0 ~ s ~ r - 1, 0 ~ t ~ 2'-8-1 - 1, and using the fact that the func
tion H! has a period equal to 17(28

-\ we obtain the equation

In view of the equality

(0 ~ u ~ 17(28
),

the above integral vanishes. I
The last two lemmas show the connection of the functions D<;) with

projection operators discussed in preceding sections.

LEMMA 3.4. Let P E :Ynp be defined by (1.8) for n = 2'-lm, p = 2' - 1
(m, r = 1,2,...), andfor ql' q2 ,... , qp Elln such that

(l = 1, 2, ... , p). (3.24)

Then we have

Fp(l, cos u) = D~)(u),

Ap(l) = p~~),

the notation being that of(2.1), (2.2), (3.1), and (3.5).

Proof In accordance with (2.2) we have the formula

n p

F p (1, y) = I'Tk(y)+ I (1 - /2-1') Tn-H(y),
k~O !~l

(3.25)

(3.26)

where we used (3.24). Equation (3.25) follows from this formula by sub
stituting y = cos u, and comparing the resulting expression on the right
hand side with definition (3.1).
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Equation (3.26) can be easily derived from(2.I), (3.25), (3.5), and (3.6):

= p~) = p~). I

LEMMA 3.5. Let P E!f;,p be a symmetric projection defined by (1.8) for
n = 2r- 1m + v, p = 2r - 2 + 0 - v (m = 1,2,... ; r = 2,3,... ; 0, v = 0, 1),
and for ql , ql ,... , qp Enn , satisfying (2.7) and such that

{I = 1, 2,... , [(p + v)/2]). (3.27)

Then we have

Fp (0, sin i) = D~~/:?(u),

Ap(O) = p~).

Proof It follows from (2.7) that

(3.28)

(3.29)

q2l+v-l(0) = 0 {I = 1,2,... , [(p + v)/2]}.

Formula (2.2) implies the equation

[n/2) [(P+v) /2)

Fp(O, y) = L:' (-I)k T2k(y) + L: q21-v(O) Tn +2Z- v(Y)·
k~O Z~l

Substitution of y = sin(u/2){ = COS(7T - u)/2)} yields the equality

u [n/2] [(p+v)/2]

Fp (0, sin 2) = L:' cos ku + L: (l - 2r
-

l
/) cos([nj2] + I) u,

7c~O l~l

where we used assumption (3.27). The right-hand side of the above formula is
D[~/~j(u) (see (3.1)). Relation (3.28) is proved.

Formula (3.29) follows easily from (2.1), (3.28), (3.5), and (3.6):

(r-l) (1) I
= P[n/~J = Pm •
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4. THEOREMS

Now, we are able to prove the following.
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THEOREM 4.1. Let r = 1, 2, ... and let M r denote the smallest natural
number such that the inequality

(4.1)

holds, where N r = 2r - 1M r , and the notation used is that of (3.11) and (1.5).
Let P E ffnp be an operator defined by (1.8) for n = 2r- 1m, p = 2r 

(m = M r , M,. + 1,... ; r = 1, 2,...), and for ql' Q2"'" qp EIIn , satisfying
(3.24). Ifl E crit(A p ) then P is a minimal projection from ffnp and has the norm

IIPII = p;;').

Proof The sequences Un and p~l) are monotonically increasing. Comparing
the asymptotic formula

p;;,) = 4
2

log m + 0(1)
7T

(see [I)) and

U2r-1m = 2
2

log m + 2r -; 2 log 2 + 0(1)
7T 7T

(cf. (1.7) we see that for r fixed and for m sufficiently large we have

(1) '--
Pm ~ U2r- 1m'

(4.3)

(4.4)

(4.5)

Thus, for r = 1,2,... there exists the number M r defined above.
We show that for an operator P E ffnp satisfying the assumptions of the

theorem the equation

(I = 1, 2,... , p) (4.6)

holds, where hi is the function defined by (2.6). By virtue of Theorem 2.1 it
follows then that P is a minimal projection from :Y:,p .

In order to prove relation (4.6) observe that we have, in view of (2.6),
(3.25), and (3.22),

Ml) = r Tn+ i(y) sgn FpCl, y)(l - y2)-1/2 dy
-1

= r cos(n + I) u sgn D~\u) du = Ynri (l = 1,2,... , p).
o

Hence, by virtue of Lemma 3.3, Eq. (4.6) follows.
Formula (4.2) follows from (2.3), (2.4), and (3.26). I
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Remark 1. The inspection of Table I given in Section 3 shows that

M 1 = M 2 = M 3 = M 4 = 1,

M 5 = 3.

It seems that the sequence M r increases rather fast. For instance we have
M 6 = 8.

Remark 2. It is clear that for m < M r the thesis of the theorem fails,
as in this case we have II P II = p~) < Un , which is, in view of (1.4), impossible.

Remark 3. In [3] we have considered the projection Cn E.:r,.l given by

(4.7)

where Un _ 1(x) = sin nu/sin u (x = cos u). Here q1(1) = (1/2n) Un - 1(1) = !,
which means that Eq. (3.24) is satisfied.

We have established numerically that 1 E crit(Ac ) for n = 1, 2, 3. The
calculations carried out by Phillips et al. [6] confirm nthis result.

Using the above theorem we conclude that Cn is a minimal operator from
5"n1 for n = 1,2,3.

Obviously, we have

COROLLARY 4.1. For n = 2r
- 1m and p = 2'> - 1 (m = M r , M r +1 , ... ;

r = 1, 2, ...) we have

The next theorem of this section is related to symmetric projections.

THEOREM 4.2. Let

(v = 0)
(r = 2, 3,... ,)

(v = 1)
(4.8)

where M r is defined as in Theorem 4.1, and M; is the small/est natural number
such that

Let P E 5';.1J be a symmetric projection given by (1.8) for n = 2r - 1m + v,
p = 2r + 0 - v - 2 (m = M vr , M vr + 1,... ; r = 2, 3,... ; 0, v = 0, 1), and
for q1 , q2'"'' q1J E lln , satisfying conditions (2.7) and (3.27). If°E crit(Ap )

then P is a minimalprojection from 5';.1J and has the norm given by formula (4.2).
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Proof. The asymptotic forms (4.3) and (4.4) imply that for m sufficiently
large we have

(r being fixed). This means that M; , defined in the theorem, actually exists
for any r = 2, 3, ....

Using definition (2.6) and Lemmas 3.5 (Eq. (3.28)) and 3.3 we derive

= rcos([nj2] + l) u'sgn D1:/~ku) du = Y[nI2],r-l,1 = 0
o

(l = 1,2,... , [(p + v)j2]).

Let WI , w2 , .•. , W p E lin satisfy (2.7). Then we have

p [(p+v) 12]

L Wi(O) hi(O) = L W21_v(O) h21- v(0) = 0,
i~1 1~1

and, by virtue of Theorem 2.2, P is a minimal projection from §;.p .
In view of (2.3), (2.4), and Lemma 3.5 (formula (3.29)) we have

Remark 4. The calculations performed show that

(r = 1, 2, ... , 6).

COROLLARY 4.2. For n = 2r-I m + v andp = 2r + 0 - v - 2 (m = M vr ,

M vr + 1,... ; r = 2, 3, ... ; 0, v = 0, 1) we have

As a simple consequence of Corollaries 4.1 and 4.2 we obtain the following.

THEOREM 4.3. If P E!J";,p, for either n = 1, 2,... and p = 1 or n =
2r - I m + v and p = 2r + 0 - v - 2 (m = M vr , M vr + 1,... ; r = 2,3,... ;
3, v = 0, 1), then P satisfies the inequality

IIPII ~ p~l)

~p~)

(p = 1),

(p> 1).
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